
 1

ABSTRACT

The current protocol used in the two-way text messaging
prototype service, UMsg, lacks proper security mechanisms,
preventing practical use. To overcome the current protocol’s
shortcomings, we first analyze its security weaknesses.
Secondly, we review various security mechanisms such as
cryptographic algorithms, identity-based encryption,
username/password systems, and shared key systems. Finally,
from the analysis, we propose a hybrid protocol that combines
various security benefits from proven security mechanisms
and protocols to provide confidentiality, integrity, and
availability to the UMsg service. While the hybrid protocol
could be secured further, our analysis depicts that it is
sufficient for use with a two-way text messaging application.

1.0 INTRODUCTION

In a recent University of British Columbia (UBC) student
engineering project supervised by Dr. David G. Michelson, a
prototype Personal Digital Assistant (PDA) wireless two-way
text messaging system was developed to provide a novel
service on UBC’s ubiquitously covered wireless network.
The service, named UMsg, is composed of two applications—
one running on the client side and one running on the server
side. The client application runs on a PalmOS-based PDA
and sends messages to designated mailboxes on the server and
retrieves messages from a user’s mailbox.

Figure 1. Client/Server Topology

While the initial UMsg prototype implements proper
functionality, the service lacks any proper security mechanism
to make it feasible for actual use. Therefore, in this paper we
analyze the current protocol, review existing protocols, and
propose a new protocol to secure the service.

2.0 CURRENT PROTOCOL

The current implementation of the UMsg application is based
on a client/server topology. Outlined below are a description
of the current protocol and an analysis of its security
violations.

2.1 Description of Protocol

The current UMsg protocol is centrally-based, involving only
client-to-server and server-to-client communication. The
protocol does not require direct client-to-client
communication, because the UMsg system revolves around
the concept of an electronic mail system, where senders place
messages on the server and the corresponding recipients
retrieve them later on. To implement an authentication
mechanism, the system uses a unidirectional, or “one-way”,
scheme, requiring only the client to send a valid username and
password combination to the server [1]. Upon successful
login, the client is able to access two services provided by the
UMsg server—sending messages and retrieving messages.

To send a message, the current protocol requires the client to
package a “Send” request in the following manner:

The character “S” || the sender’s unique ID || the
recipient’s unique ID || text message

The notation for this communication scheme is expressed as:

Client → Server: S || senderID || recipientID || message

In the send request scheme, the senderID is the client’s unique
ID. The request functions as a Remote Procedure Call (RPC)
to the UMsg server. Upon receiving the request, the server
parses the information in the separate fields and places the
message in the corresponding mailbox (recipientID). The
recipient retrieves the message at a later time by transmitting a
retrieve request to the server.

To retrieve messages, the current protocol requires the client
to package a “Retrieve” request in the following manner:

The character “R” || the recipient’s unique ID.

The notation for this communication scheme is expressed as:

Client → Server: R || recipientID

In the retrieve request scheme, the recipientID is the client’s
unique ID. Similar to the send request, the UMsg server
parses the RPC upon receiving it and replies with all messages
found in the corresponding mailbox (recipientID). The server

Security for a Two-Way Text Messaging
Application

Kevin Lai, Handika Handoko, Tuan Vo, John Li

 2

appends a number at the beginning of the reply to indicate
how many messages are included and separates individual
messages with the corresponding sender IDs. All messages
that are currently in the recipients mailbox will be appended to
the reply, allowing the client to retrieve all his/her messages in
a single package from the server. The protocol is as follows:

The number of messages || sender 1’s unique ID || sender
1’s message || sender 2’s unique ID || sender 2’s message
|| …

The notation for this communication scheme is expressed as:

Server → Client: # of messages || senderID 1 || senderID 1
message || senderID 2 || senderID 2 message || …

In both cases, the server plays a passive role in the system,
requiring the client to initiate a request. The server does not
broadcast to all clients when a new message arrives, but
instead requires the clients to check for new messages
periodically.

Figure 2. Sending and Retrieving Messages

2.2 Security Violations

As evident, the current protocol does not provide any security
mechanisms. The original purpose of the two-way text
messaging project was to demonstrate that a PDA text-
messaging application can be incorporated relatively easily
into a corporate wireless LAN. With that goal accomplished,
the protocol can now be analyzed for security violations that
prevent the service from being used reliably.

While the current protocol provides a form of authentication
via a login procedure, there is in fact no mechanism to prevent
a user from sending messages as another user or retrieving
messages from another user’s mailbox by hacking the client
application. A confidentiality violation can be seen in the
following example:

User X → Server: R || User A

Upon receiving the retrieve request from User X, the server
will return all messages in User A’s mailbox to User X.
Under the current protocol, the server is not capable of
mediating every request it receives after a user has
successfully logged into the system.

On the same rationale, an integrity violation occurs when a
user spoofs the senderID in a send request. The following
example highlights such a violation:
1. User A → Server: S || User A || User B || “Would you like

to meet this afternoon around 2 pm?”
2. User B → Server: R || User B
3. Server → User B: 1 || User A || “Would you like to meet

this afternoon around 2 pm?”
4. User B → Server: S || User B || User A || “Yes”

(Intercepted by User X)
5. User X → Server: S || User B || User A || “No”

User A sends the message “Would you like to meet this
afternoon around 2 pm?” to User B. After successfully
retrieving the message from User A, User B sends the reply
“Yes”. Due to the malicious actions of User X, User B’s
message never reaches User A. Instead, User X’s message,
spoofed as User B, reaches User A, thus violating integrity
through repudiation of source.

Finally, an availability violation exists since an attacker can
flood a user’s mailbox. A Denial of Service (DoS) attack such
as this wastes the processing and storage resources, preventing
the server from providing text messaging services to
legitimate requests [2]. While the server could log the
senderID to determine if a particular user is spamming
mailboxes, the integrity violation mentioned above allows an
attacker to send messages as various different users.

A short example of how the flooding could be accomplished is
as follows:

User X → Server: S || User B || User A || “Spam!”
User X → Server: S || User C || User A || “Spam!”
User X → Server: S || User D || User A || “Spam!”
User X → Server: S || User E || User A || “Spam!”

From the analysis, one can see that the current protocol
possesses many security flaws that make the UMsg
application impractical for use in a wireless networking
infrastructure.

3.0 ANALYSIS OF SECURITY MECHANISMS AND

PROTOCOLS

Before proposing a new protocol, we first analyze various
security mechanisms to determine their benefits and
weaknesses. In the sections below, cryptography and identity-
based encryption mechanisms are discussed, as well as
username/password and shared key protocols.

3.1 Cryptography

Cryptography has always been associated with security
because cryptography deals with the art of concealing
information from parties that are not authorized to read it.
The first use of cryptography was recorded almost 2000 years
ago when Julius Caesar used a simple cryptographic algorithm
to communicate with his army. Today, the Caesar cipher no
longer serves its duty as various cryptanalysis techniques have

 3

improved and the standard that people have for security has
growth significantly.

The implementation of cryptography requires the use of a
cryptographic algorithm that does not depend on the secrecy
of the algorithm. The strength of that cryptographic algorithm
should rely on the secrecy of the key itself. This reasoning
agrees closely to the Principle of Open Design:

“The principle of open design states that the security of a
mechanism should not depend on the secrecy of its design
or implementation” [3].

For the purpose of securing the original protocol, a few modes
of operation of cryptography have been analyzed. A brief
discussion of these modes of operation is as follow:
1. Electronic Code Book (ECB)

ECB is the simplest mode of operation, but it is also the
most useful one since a lot of other modes of operation
are based on ECB. The idea behind ECB is the use of a
shared key to encrypt plaintext (using its respective
encrypting algorithm) and to decrypt ciphertext (using its
respective decrypting algorithm) [4].

m1 mnm2

EKEKEK

c1 c2 cn

Encryption
M = m1 | m2 | … | mn

C = c1 | c2 | … | cn

m1 mnm2

DKDKDK

c1 c2 cn

M = m1 | m2 | … | mn

Decryption
C = c1 | c2 | … | cn

Figure 3. Encrypting and Decrypting in ECB

2. Cipher Block Chaining (CBC)
 CBC overcomes the weaknesses of ECB, such as is

vulnerability to “cut-and-splice” attacks, by transforming
plaintext to ciphertext in succession using a constantly
modified key.

m1 m2

EKEK

c1 c2

XOR XOR

Encryption
M = m1 | m2 | … | mn

C = IV | c1 | c2 | … | cn

Initialization
Vector

m1 m2

E2E1

c1 c2

Decryption

XOR XOR

Initialization
Vector

Figure 4. Encrypting and Decrypting in CBC

3. Cipher Feedback mode (CFB)

While CBC’s implementation provides much better
protection than ECB, CBC still possesses a weakness in
the performance sector. Because each subsequent
ciphertext must be generated from the previous
ciphertext, the computation of each block of ciphertext

cannot be completed until a block of plaintext is
completely received. CFB handles this weakness by
implementing block cipher as a self synchronizing stream
cipher [5].

m1 m2

EK

c1 c2

Encryption
M = m1 | m2 | … | mn

c1 = {IV}k XOR m1

Initialization
Vector

EKXOR XOREK

Figure 5. Encrypting in CFB

4. Output Feedback mode (OFB)

OFB is used when a synchronous stream cipher is desired
from a block cipher. It works in a similar fashion as CFB.
In OFB, the output of a cipher block is XOR-ed back with
the subsequent plaintext to get the subsequent ciphertext
[5].

m1 m2

EK

c1 c2

Encryption
mi = ci XOR si

ci = mi XOR si

Initialization
Vector

EK

s0
XOR XOR

s1 s2

si = Ek (si-1)

Figure 6. Encrypting in OFB

After selecting the appropriate mode of operation, there are
still a few more things that must be taken care of when
implementing cryptography:
a. Cryptography itself. In its implementation, we will not

use our own cryptographic algorithm. The reason is
because we are not capable of devising a bullet proof
cryptographic algorithm

b. Key generation. The algorithm used to generate the key
should not generate keys that can be deduced from a
combination of plaintext and ciphertext.

c. Randomization.
d. Key management.
e. Buffer and information leakage.

While cryptography provides confidentiality by encrypting
outgoing information, the algorithm alone does not provide
integrity of origin or availability. Replayed messages violate
integrity and also consume availability of services if used in a
flooding attack.

 4

3.2 Identity-Based Encryption

In an identity-based encryption (IBE) scheme, a cryptosystem
uses an arbitrary string as a valid public key [6-7]. With an
IBE system, public key distribution is no longer a concern
since an entity’s public key is simply a string that uniquely
represents its identity. On a network infrastructure, this
unique information can be a user’s unique login name, IP
address, or MAC address. Looking up, retrieving, or
verifying public keys or certificates are no longer required.
To decrypt a message, a private key for the particular message
has to be retrieved from a trusted third party, often known as
the private-key generator (PKG). A recipient requests a
private key from the PKG to decrypt the message he/she has
received. After successfully verifying the recipient’s identity,
the PKG uses a secret master key to generate a private key
based on the arbitrary string (IP address for example) that
constituted the recipient’s public key [8].

Advantages of IBE are [9]:
1. Users can send messages to recipients who have not yet

setup a public key
2. Improved performance and reduced complexity by

eliminating public key lookup
3. Sent messages can only be read at some certain time in

the future, since the private key is derived from the public
key

4. A recipient’s private key is valid only for a period of time
and then is refreshed

5. Verification of a user can be performed by using the
unique identity associated with that user

3.3 Username and Password

Passwords are one of the oldest mechanisms for enhancing
security that a computer security analyst can think of. The
simplistic, intuitive nature of the password system has kept its
existence over time. It provides a sense of security since only
users authenticated by the system can use the system and
hence provides confidentiality and integrity services to a user.
However, a password system is not without its drawbacks. A
brute force attack using wordlists can precisely guess a
password in a short period of time. Implementation of a
username and password system on the two-way text
messaging protocol still leaves it vulnerable to such an attack;
therefore, even applying passwords does not provide a reliable
form of security for the messages exchanged [10].

Despite the password system’s weaknesses that make it
relatively easy to compromise (provided a high performance
computer), the mechanism is still widely used. With a
properly chosen password, the system provides a sufficient
level of security. The use of password system is analogous to
the use of extra locks to your door. The extra lock that you
have installed does not guarantee that nobody can enter your
premises without permission. Its purpose is to increase your
level of security and making the task of an adversary harder to
accomplish.

3.4 Shared Key with Time Stamping

In a centralized client-server application, the server relays all
communication and thus, could act as a trusted third party to
clients [6]. The shared key with time stamping protocol
requires the server to share a secret key with each registered
client, allowing him/her to send messages encrypted with the
“shared key” to the server. Using a shared key scheme, the
server is capable of decrypting inbound messages received
from senders and encrypting outbound intended for recipients.
While the IEEE 802.11 wireless communication protocol has
its own security mechanisms, a shared key system can use
timestamps to assist in preventing man-in-the middle and
session hijacking attacks. Time stamping also ensures that the
server does not waste its resources servicing old requests sent
by attackers [11]. In a shared key system, the following
conditions are assumed:
1. Clients obtained the shared keys via a secure means,

either from the server either in person or through another
safe mechanism

2. Clocks on the mobile devices are synchronized with the
server clock [1].

User A and User B use their shared keys (kUserA and kUserB)
with the server to send and retrieve messages as follows:
1. User A → Server: UserA || {S || UserA || UserB || T ||

Message}kUserA
2. User B → Server: UserB || {R || UserB || T}kUserB
3. Server → UserB: {T || 1 || UserA || Message}kUserB

User A’s and User B’s names are also located outside the
encrypted messages so that the server can look up the
corresponding shared key to decrypt incoming messages. An
attacker cannot record and replay the messages because he/she
will not be able to renew the time stamp in the encrypted
message without the shared key. This protocol also protects a
client’s mailbox from being flooded with unwanted messages
from attackers. Because the name of the recipient of the
message is encrypted, an attacker cannot easily target a
particular mailbox and flood it. Also, if an attacker records
the first message and attempts to replay it multiple times in
rapid succession before the timestamp is invalidated, the
server is able to detect that the same message is being sent by
retaining the last timestamp used by every user. If messages
are sent multiple times from one IP address, the server could
also take appropriate actions, such as banning further
messages coming from that IP address.

Although this protocol provides the mechanisms for
authentication and prevention of replay attack, it assumes the
shared key can not be derived from the messages. However,
the use of one shared key to encrypt all communication
between one user and the server provides persistent attackers
with the opportunity to perform statistical analysis and attempt
to derive the shared key. Once a shared key is compromised,
an attacker gains full access to the user’s account.
Furthermore, key management and distribution is still a
fundamental problem with shared key systems.

 5

4.0 PROPOSED PROTOCOL

The revised protocol for the UMsg application should provide
confidentiality, integrity, and availability, but in a manner that
is practical for a two-way text messaging application. In
accordance, the proposed solution is a hybrid protocol
consisting of elements from cryptographic mechanisms,
identity-based encryption, username/password, and shared key
protocols.

4.1 Description of Protocol

The proposed protocol requires an initialization stage for
every request made to the server. The purpose of the
initialization stage is to authenticate a user with their UBC
Campus Wide Login (CWL) and provide a nonce session key
for a send or receive request (“Nonce” means “used only
once”). To begin a request, the client first sends a “Session
Key” request to the server.

Notation
UserA_CWL = CWL username of User A
kCWL = SHA1 Hash of CWL (username || password)
kSessA = Session key for User A
T = Timestamp
Rand = 128-bit random number
S = Send request
R = Retrieve request

The client’s request will be encrypted on the PDA using a
secret key, kCWL, derived from a hash of the client’s CWL
username and password before being sent to the server. By
using the CWL information to generate the shared key, some
benefits of an identity-based encryption scheme are utilized.
Since the CWL information uniquely identifies a user, the
server can verify his/her identity based on the information it
already possesses. A complete IBE system is not required,
since direct client-to-client communications do not occur
when using the UMsg service. Furthermore, the problem with
shared key distribution is avoided since the CWL information
is pre-established by UBC’s IT Services.

Upon receiving the request, the server responds with an
encrypted message using the same secret key containing a
session key, kSess, which can be used for one request by the
client. After a request is made with the provided session key,
the key is immediately invalidated.

The notation for the initial handshake stage is as follows:
1. User A → Server: UserA_CWL || {SessionKeyRequest ||

UserA_CWL || MAC Address || T || Rand}kCWL
2. Server → User A: {SessionKeyReply || UserA_CWL || T

|| kSessA || Rand + 1}kCWL

The protocol assumes that the UMsg server has access to
UBC’s CWL information, since the UMsg server will be a
part of UBC’s network and will be managed by IT Services.
The UMsg server will parse the CWL username it receives in
the request, match the username to the corresponding

password in its records, compute the kCWL for the user, and
decrypt the message. If the server is unable to successfully
decrypt the message, then the request fails, indicating to the
server that the client entered in their login information
incorrectly.

The client is also required to send his/her device’s MAC
address in the protocol to provide a second level of
authentication. The CWL username and MAC address sent in
the request is compared against UBC’s DNS server to verify
the same user logged in on the wireless network is currently
sending the request. If the DNS check fails, the session key
request fails.

Added in this protocol is the ability for the server to
authenticate itself in the reply, proving to the client that the
reply came from the UMsg server. The random number sent
in the original session key request is incremented by one and
transmitted in the session key reply to indicate to the client
that the his/her message was successfully received/decrypted
by the server and that message they are receiving came
directly from the server. Also included in the proposed
protocol is a timestamp T to prevent replay attacks.

Sending or retrieving messages requires the use of the session
key obtained in the initialization stage. The protocol for
sending is as follows:

User A → Server: S || UserA_CWL || {S || T ||
UserA_CWL || recipient_CWL || message}kSessA

The retrieve request and retrieve reply are as follows:
1. User A → Server: R || UserA_CWL || {R || T ||

UserA_CWL}kSessA
2. Server → User A: {T || # of messages || sender1_CWL ||

message 1 || sender2_CWL || message 2 || …}kSessA

While the proposed protocol can utilize any cryptographic
algorithm, the Advanced Encryption Standard (AES), based
on Rajindael’s algorithm, is well established, making it the
recommended choice. AES uses Cipher Block Chaining
(CBC) with 128-bit keys and 128-bit block sizes for its
encryption scheme [8].

4.2 Confidentiality

With the use of a cryptographic algorithm such as AES, the
proposed protocol provides confidentiality, since all messages
sent and received between clients and the server are encrypted
before transmission. While the sender ID is still exposed in
plaintext so that the server can determine what CWL hash key
to use, the recipient and message itself is now in ciphertext.
To further enhance the security mechanism, session keys are
only used once per request, preventing previously transmitted
messages from being disclosed even if an attacker
compromises the current session key. The protocol assumes
the CWL username and password are pieces of information
only known by the user, thus constituting a secret key. In
addition, UBC’s CWL server is assumed to store passwords

 6

using a publicly known hash, such as SHA1, that can be used
on the client side to generate kCWL.

4.3 Integrity

To preserve integrity and non-repudiation of source, the
proposed protocol allows the UMsg server to provide a first
level authentication mechanism by verifying that it can
decrypt the message with its CWL hash key. A successful
decryption of the message indicates to the server that the
message was transmitted by the owner of the CWL account,
since the protocol assumes that only the owner of the account
knows the password. In conjunction, UBC’s DNS server acts
as a second authentication mechanism by comparing the CWL
information and MAC address transmitted in a session key
request with the information in its DNS records. The DNS
check also provides non-repudiation of source for the two-
way text messaging application, since only the CWL user
logged into UBC’s wireless network can be using the service.
The CWL information is checked by the UMsg server and the
DNS server.

For the client to verify that the integrity of the session key
reply is preserved, the UMsg server increments the random
number in the original request and sends the result in the
reply. Upon receiving the reply, the client decrypts the
message and verifies that he/she received the random number
sent out in the original request, but incremented by one.

The man-in-the-middle attack is avoided by using nonce
session keys. While an attacker can listen to communications
in an attempt to crack the session key, the key is updated for
every request, making the protocol much more difficult to
break. Both the re-use of session keys and timestamps allow
the server to detect and prevent replay attacks.

4.4 Availability

In terms of availability, the protocol protects recipient
mailboxes from being flooded by allowing the server to detect
and discard replayed messages based on the re-use of a
session key. To prevent attackers from flooding the server
with session key requests, the DNS server can determine the
IP address of the sender and deny access after reaching a
threshold of failed session key requests. This check can be
done irregardless of whether or not the attacker spoofs the
CWL username on the request.

4.5 Other Security Benefits

In addition to providing confidentiality, integrity, and
availability, the hybrid protocol also provides various other
security benefits based on security design principles.
Including timestamps in messages provides forward security,
while updating the session key for every request provides
backward security [12]. In addition, the DNS server’s
authentication check on the UBC wireless login and the
UMsg’s authentication check on the application login provide
a form of multi-level authentication. The complete mediation

principle is put into effect by requiring a new session key to
be obtained for every send or receive request. Even after a
user has successfully logged in, every request is first checked
by the server to ensure that the user’s information has not
been tampered with after logging in. The protocol conforms
to an open design principle, where its security relies only on
keeping the key secret and not the algorithm. In this case, the
key is the CWL password for a particular account. The hash
function, SHA1, used to generate the CWL username and
password hash key, kCWL, and the encryption algorithm, AES,
are both publicly known. Finally, a separation of privileges
principle is adhered to requiring both the DNS server and the
UMsg server to grant access to a user. Both servers must
grant you access before the text messaging service can be
utilized.

5.0 CONCLUSION AND FUTURE WORK

The proposed hybrid protocol achieves a suitable combination
of security benefits from various different mechanisms and
protocols for the UMsg service. While the proposed protocol
could implement additional layers of security, it is sufficient
considering the relative simplicity of the prototype UMsg
service. Cryptographic algorithms in conjunction with shared
keys provide confidentiality, while a pseudo-IBE scheme
using the UBC CWL information provides integrity.
Availability is preserved through the nonce session keys and a
server-side mechanism for handling flood and replay attacks.

Pseudo-code for the hybrid protocol can be found in the
Appendix. Our analysis hopes to depict how the proposed
protocol addresses the various security weaknesses of the
original protocol. Future work involves merging the hybrid
protocol and evaluating its effectiveness through actual hands-
on testing.

6.0 APPENDIX

6.1 Client Pseudo-code

// SessionKey+Random#+UsernamePassword+TimeStamping
// Client Side

String T; // timestamp
String Rand; // random number
String myCWL = getMyCWL() // CWL user naem
String myPassword = getMyPassword(); // CWL password
String MACAddress = getMacAddress(); // MAC address
String kCWL = SHA1Hash(myCWL + myPassword); //
obtain CWL key by hashing CWL login and password

Struct packet

// The "+" sign represents a way to concatenate
// strings so that the final string
// could be disassembled later

Main()
{
 String sessionKey;
 String userCommand = getUserCommand();

 While(userCommand != "quit"){

 7

if(userCommand == sendMsg or userCommand ==
retrieveMsg){

 Rand = (String) getRandomNumber();
 T = getCurrentTime();

 sessionKey = Handshaking();
 if(sessionKey = error)
 Report error and break;

 if(userCommand == sendMsg)

sendPacket=
"S"+myCWL+encrypt(Ksession,"S"+T+UserA_CWL+r
eceiverCWL+Message);

 else
sendPacket=
"R"+myCWL+encrypt(Ksession,"R"+T+UserA_CWL);

 replyPacket = fromServer();
 reply = decrypt(Ksession,replyPacket));
 if(reply == error)
 report server reply error and break
 if(userCommand == sendMsg)

process the acknowledgement reply of the
server

 else
process the reply and update the database
and user interface with the new messages
retrieved

 }
 else
 process other userCommands on the client......

userCommand = getUserCommand(); // get new
// UserCommand

 }
}

// Handshaking is used to obtain the session key
// from the server
String Handshaking()
{
 packet replyPkg;

packet packet1 =
encrypt(kCWL,"SessionKeyRequest"+UserA_CWL+MACAd
dress+T+Rand);

 packet sendPkg = myCWL+packet1;

 toServer(sendPkg);
 replyPkg = fromServer();

return getSessionKeyDecrypt(kCWL, sendPkg,
replyPkg);

}

// encrypt a message
packet encrypt(Key, String msg)
{
 Encrypt the msg with the given key
}

// Retrieve session key from the reply package
Key getSessionKeyDecrypt(Key key1,packet packet1,
packet packet2)
{
 packet decPacket1 = decrypt(key1,packet1);
 packet decPacket2 = decrypt(key1,packet2);

if((decPacket1.T and decPacket2.T are within 30
seconds) &&
(decPacket1.Random==decPacket2.Random+1))

 return dePacket2.Ksession;
 else
 return error
}

// decrypt a package
String decrypt(Key key1,packet packet1)
{

Decrypt the packet with given key and disassembled
to different components (i.e. T, Ksession, ID,
etc)

}

6.2 Server Pseudo-code

// SessionKey+Random#+UsernamePassword+TimeStamping
// Server Side

String T; // timestamp
String Rand; // random number
String myPassword = getMyPassword(); // CWL
password
String MACAddress = getMacAddress(); // MAC
address of user
String kCWL;

Struct packet;

// The "+" sign represents a way to concatenate
// strings so that the final string
// could be disassembled later

Main()
{
 String sessionKey;
 String ServerCommand = getServerCommand();
 While(ServerCommand != "quit"){

// receive request from the client over the
// network
fromClientPacket = fromClient();

 T = getCurrentTime();

 // client is requesting a new session key

if(userCWLExist(extractFirstItem(fromClientPacke
t)))

 {
kCWL =
hashtable.lookup(extractFirstItem(fromClientPa
cket));

ClientRequest =
decrypt(kCWL,fromClientPacket); //includes
errorchecking

if(check(ClientRequest.MACAddress) &&
(ClientRequest.T is within 30 seconds of T)){

 // arbitrary random key

sessionKey =
SHA1Hash(ClientRequest.userCWL,ClientRequest
.T,ClientRequest.Random+1);

 sessionKeyHashtable.put(userCWL,sessionKey);

replymsg =
encrypt(kCWL,SessionKeyReply+myCWL+T+session
Key+ClientRequest.Random+1);

 toClient("SessKeyReply"+replymsg);

 }
 else
 report error and break
 }

// If user want to send new messsages to server
// or retrieve new messages from the server
else if(extractFirstItem(fromClientPacket) ==
"R" || extractFirstItem(fromClientPacket) ==
"S")

 {
// get an existing session key for the client
// from the hash table

 // using the userCWL

 8

sessionKey =
sessionKeyHashtable.lookup(extractSecondItem(f
romClientPacket));

 if(sessionKey == error)
 report error and break

ClientRequest =
decrypt(sessionKey,fromClientPacket);

if(ClientRequest != error && (ClientRequest.T
is within 30 sec of T))

 {
 // check if encrypted field match

// non-encrypted field
if(ClientRequest.SendRetrieveField ==
extractFirstItem(fromClientPacket)){

 if(ClientRequest.SendRetrieve == "S")
inbox.put(ClientRequest.receipient,
ClientRequest.msg);

// Client wants to retrieve new messages
else

 {
replymsg =
encrypt(sessionKey,T+inbox.getTotalMsgN
umber);

ClientRequest.userCWL)+inbox.getNewestM
sg(ClientRequest.userCWL));

inbox.deleteNewestMsg(ClientRequest.use
rCWL);

 toClient(replymsg);
 }
 // delete the session key

sessionKeyHashtable.delete(ClientRequest.
userCWL);

 }
 }
 else
 report invalid package and break
 }
 else

report invalid package and break

 ServerCommand = getServerCommand();
 }
}

Hashtable functions: lookup(), put(),delete();
Inbox functions: getTotalMsgNumber(),
getNewestMsg(), put(), delete();

7.0 REFERENCES

[1] Needham, Roger M., “Using Encryption of

Authentication in Large Networks of Computers,” In
Communications of the ACM, Vol. 21, pp. 993-994, 1978.

[2] Northcutt, Stephen & Novak, Judy, “Denial of Service,”

Network Intrusion Detection 3rd Edition, Sams, 2002.

[3] Bishop, Matt, Computer Security: Art and Science,

Addison Wesley, 2003.

[4] Swawinatha, Tara M. et. al., “Wireless Security and

Privacy: Best Practices and Design Techniques,” Addison
Wesley, 2002.

[5] Schneier, Bruce, Applied Cryptography, Second Edition:

Protocols, Algorithms, and Source Code in C, John Wiley
& Sons, Inc., 1996.

[6] Appenzeller, Guido & Lynn, Ben, “Minimum-Overhead

IP Security using Identity Based Encryption,” Stanford
University.

[7] Shamir, A, “Identity-Based Cryptosystems and Signature

Schemes,” In Advances in Cryptology - Crypto ’84,
Lecture Notes in Computer Science, Vol. 196, Springer-
Verlag, pp. 47-53, 1984.

[8] Boneh, D. & Franklin, M., “Identity based encryption

from the Weil pairing,” In Proceedings of Crypto ’2001,
Lecture Notes in Computer Science, Vol. 2139, Springer-
Verlag, pp. 213-229, 2001.

[9] Stading, Tyron, “Secure Communication in a Distributed

System Using Identity Based Encryption,” IBM.

[10] Vines, Russel Dean, “Wireless Security Essentials:

Defending Mobile Systems from Data Piracy,”
Indianapolis, Wiley Publishing, 2002.

[11] “Wireless Network Security,” Proxim Corporation,

Whitepaper, 2003.

[12] Abdulla, Michel et. al., “Forward-Secure Threshold

Signature Schemes,” University of California, p. 6, 2002.

Bachmann, Glenn, PalmOS Programming, Sams, 2002.

Pogue, David, Palm Pilot: The Ultimate Guide, O’Reilly,
1999.

